The Width of Resonances for Slowly Varying Perturbations of One-dimensional Periodic Schrödinger Operators

نویسنده

  • FRÉDÉRIC KLOPP
چکیده

In this talk, we report on results about the width of the resonances for a slowly varying perturbation of a periodic operator. The study takes place in dimension one. The perturbation is assumed to be analytic and local in the sense that it tends to a constant at +∞ and at −∞; these constants may differ. Modulo an assumption on the relative position of the range of the local perturbation with respect to the spectrum of the background periodic operator, we show that the width of the resonances is essentially given by a tunneling effect in a suitable phase space. Résumé. Dans cet exposé, nous décrirons le calcul de la largeur des résonances de perturbations lentes d’opérateurs de Schrödinger périodiques. Cette étude est unidimensionnelle. Les perturbations lentes considérées sont analytiques et locales au sens où elles tendent vers une constante en +∞ et en −∞ ; ces deux constantes peuvent toutefois être différentes. Sous des hypothèses adéquates sur la position relative de l’image de la perturbation locale par rapport au spectre de l’opérateur de Schrödinger périodique, nous démontrons que la largeur des résonances est donnée par un effet tunnel dans un espace de phase adéquat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preservation of the Absolutely Continuous Spectrum of Schrödinger Equation under Perturbations by Slowly Decreasing Potentials and A.e. Convergence of Integral Operators

X iv :m at h/ 96 10 21 6v 1 [ m at h. SP ] 1 O ct 1 99 6 Abstract. We prove new criteria of stability of the absolutely continuous spectrum of one-dimensional Schrödinger operators under slowly decaying perturbations. As applications, we show that the absolutely continuous spectrum of the free and periodic Schrödinger operators is preserved under perturbations by all potentials V (x) satisfying...

متن کامل

On Effective Hamiltonians for Adiabatic Perturbations of Magnetic Schrödinger Operators

We construct almost invariant subspaces and the corresponding effective Hamiltonian for magnetic Bloch bands. We also discuss the question of the dynamics related to the effective Hamiltonian. We assume that the magnetic and electric potentials are slowly varying perturbations of the potential of a constant magnetic field and a periodic lattice potential, respectively.

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator

In this paper, I consider one-dimensional periodic Schrödinger operators perturbed by a slowly decaying potential. In the adiabatic limit, I give an asymptotic expansion of the eigenvalues in the gaps of the periodic operator. When one slides the perturbation along the periodic potential, these eigenvalues oscillate. I compute the exponentially small amplitude of the oscillations.

متن کامل

Resonances for Perturbed Periodic Schrödinger Operator

Here V is periodic with respect to the crystal lattice Γ ⊂ R, and it models the electric potential generated by the lattice of atoms in the crystal. The potential W is a decreasing perturbation and h a small positive constant. There has been a growing interest in the rigorous study of the spectral properties of Bloch electrons in the presence of slowly varying external perturbations see 1–11 . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008